Urban wastewater from primary treatment followed by microalga cultivation for *chlorella vulgaris* biomass production. pH influence (smallwat21)

Gassan Hodaifa

Molecular Biology and Biochemical Engineering Department, Chemical Engineering Area, University of Pablo de Olavide, ES-41013 Seville, Spain. Email: <u>ghodaifa@upo.es</u>

Motivation

Urban wastewaters characteristics

- 1. High organic load (higher values for COD and TOC).
- 2. High volumes that can not be reused directly in the process itself nor in irrigation without prior treatment.
- 3. Presence of different pollunts such as heavy metals, pharmaceutical compounds, etc.
- 4. High urban sludge volume generation with difficult managements.

Unión Europea

Diagram flow of the urban wastewater treatment plant

Motivation

Prof. Hodaifa

MICROALGAE

- ✓ Simple cellular structure
- $\checkmark\,$ Versatile biochemical composition
 - ✓ Energetic compounds-rich composition
 - Promising non-food source of biofuels, pigments, bioactive compounds, etc.
- \checkmark Rapid and high growth rate
- ✓ Easy culture
- Environmental applications: carbon dioxide mitigation, wastewater treatment, etc.
- Potential renewable source for human nutrition, animal feed, cosmetics and biomedicine products, etc.
- ✓ Potential of use in Aquaculture (fish feed).

Motivation

Motivation

2000 m

Experimental

Prof. Hodaifa

Fig. 1. Experimental facility before culture start-up.

Crude urban

wastewater

from

primary treatment Photo-

bioreactors

facility

Unión Europea Fondo Europeo de Desarrollo Regional

7

Fig. 2. Cultures at the end of the experiments.

Fig. 3. Experimental common operating conditions.

Results

Fig. 1. Growth curves of *C. vulgaris* growth in P-UW at pH = 6 (A) and the variation of the maximum specific growth rates and volumetric biomass productivities versus the pH value of the culture media (B). Common operating conditions: P-UW, aeration rate 0.5 L/min, mechanical stirring 200 rpm, illumination intensity 359 μ E/(m² s) and temperature 25 °C.

Unión Europea

Results

Fig. 2. Net biomass generation (x-x_o, g/L) of *C. vulgaris* growth in P-UW at different pH-values. Operating conditions: P-UW (without dilution), mechanical stirring = 200 rpm, aeration rate = 0.5 L/min, T = 25 $^{\circ}$ C and artificial illumination at 395 μ E/(cm² s).

Results

Fig. 3. Carbon and nitrogen species behaviour during *Chlorella vulgaris* growth on P-UW. Operating conditions: P-UW (without dilution), pH = 7, mechanical stirring = 200 rpm, aeration rate = 0.5 L/min, T = 25 °C and artificial illumination at 395 μ E/(cm² s).

Fondo Europeo de De

Results

Fig. 4. Linear relationship between biomass concentrations of the microalga *Chlorella vulgaris* versus total organic carbon (TOC) values.

Table 1. Characterization of primary urban wastewater (P-UW) before and after treatment with *Chlorella vulgaris* at different pH-values and control cultures.

Parameter	Tap water	P-UW	UV	Control experiment						
			5	6	7	9	10	11	UW-aeration ¹	
рН	6.85	6.86	4.63	6.03	7.42	9.3	9.99	10.5	9.3	
Conductivity, μS/cm	0.00256	1505	1600	1780	1956	2000	1998	1990	2010	
Turbidity, FTU	1.19	69	7.7	5.59	5.48	5.57	6.07	5.93	9.71	
COD, mg O ₂ /L	0.00	283.8	192	297	204	104	125	3.57	_2	
$BOD_5 (mgO_2/L)$	ND ³	81.5	5.34	6.84	6	6.42	6.94	0.67	0.01	
Disolved O ₂ , mg O ₂ /L	8.2	3.07	8.01	8.11	7.32	8.28	8.11	7.65	7.8	
Total solid, %	0.020	0.101	-	-	-	-	-	-	-	
Organic matter, %	0.006	0.0368	-	-	-	-	-	-	-	
Ash (%)	0.013	0.0639	-	-	-	-	-	-	-	
TC (mg/L)	24.0	256	64.6	282	80.1	162.4	217	690	70.7	
TOC (mg/L)	1.85	135	64.2	278	79.5	69.6	54.9	66.6	25.4	
IC (mg/L)	22.1	121	0.47	4.39	0.59	92.8	162	624	45.2	
TN (mg/L)	0.51	101	9.48	35.3	6.53	6.41	5.96	4.43	3.5	
NN (mg/L)	0.15	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0	

¹UW-aeration: This culture simulated the culture with experimental highest microalga growth at pH = 9 but without microalga inoculation and applied the same operating conditions: aeration rate = 0.5 mL/min during 469 h, agitation rate 200 rpm, artificial continuous illumination at intensity = at 395 μ E cm⁻² s⁻¹ and temperature = 25 °C. ²-: Data not determined.

³ND: not detected.

Results

Table 2. Biochemical composition of the biomass obtained from Chlorella vulgaris growth in primary urban wastewater at various pH-values and in the control experiment at pH = 9 without microalga.

C vulgaris biomass	Darameter	Control experim	nent	C. vulgaris cultures at different pH-values						
	rarameter	(only aeration	ר)	5	6	7	9	10	11	
Biochemical composition	Chlorophyll a, %	0.19	0	.05	0.06	0.02	0.21	0.20	0.00	
	Chlorophyll b, %	0.21	0	.01	0.02	0.01	0.06	0.05	0.00	
	Total chlorophylls, %	0.40	0	.05	0.08	0.03	0.27	0.25	0.00	
	Carotenoids, %	0.13	0	.02	0.21	0.02	0.10	0.09	0.00	
	Crude Proteins, %*	8.39	2	0.5	13.5	8.13	10.9	21.9	17.8	
	Carbohydrates, %	75.8	6	3.6	70.6	73.4	75.0	67.6	82.8	
	Lipids, %	6.56	6	.50	7.45	11.5	13.3	6.16	ND	
	Total biomass composition, %	91.3	9	0.7	91.8	93.1	99.6	96.0	100	
Biomass in terms of carbon and nitrogen species	TC, mg/L	188	2	78	282	589	455	187	85.8	
	TOC, mg/L	175	2	76	278	587	426	166	10.2	
	IC, mg/L	13.4	1	.25	4.39	2.07	28.4	21.2	75.6	
	TN, mg/L	11.9	5	8.7	35.3	44.1	33.4	18.6	1.48	
*Crude protein = 6.25 × % total nitrogen in the biomass (Becker, 1994).										

Conclusions

> Microalgae could play a key function in the treatment of the urban wastewater.

- > The feasibility of the *C. vulgaris* in the treatment of primary urban wastewater was demonstrated and verified.
- > The incorporation of microalgae to the urban wastewater treatment plant presents a sustainable bioprocess with

great benefices for the final treated water quality (reduction on N and P contents), energy and other added values

products plus carbon capture to slow down the climatic change.

- Reduction on the production of the secondary sludge.
- > The application of hybrid system (conventional-microalgae) in the wastewater treatment is an innovation to

achieved the sustainability.

Acknowledgements

This research work has been funded by the European Regional Development Fund (ERDF) and by the Consejería de Economía, Conocimiento, Empresas y Universidad, of the Junta de Andalucía, in the framework of the Operational Programme FEDER Andalucía 2014-2020. Specific objective 1.2.3. "Promotion and generation of frontier knowledge and knowledge oriented to the challenges of society, development of emerging technologies") in the framework of the reference research project (UPO-1260312). ERDF co-financing rate 80%.

Thank you for your attention

