

MICROPLASTICS IN SMALL WASTEWATER TREATMENT PLANTS: A CASE OF STUDY IN SIERRA DE CÁDIZ (SPAIN)

A.A. Franco ¹, A.P. Martín ¹, A. Egea-Corbacho ¹, G. Albendín ², J.M. Arellano ², R. Rodríguez ¹, J.M. Quiroga ¹, M.D. Coello ¹

¹ Department of Environmental Technologies, Faculty of Marine and Environmental Sciences, University of Cadiz, 11510, Puerto Real, Cádiz, Spain.

² Toxicology Department, University Institute of Marine Research (INMAR), International Campus of Excellence of the Sea (CEI MAR), Faculty of Marine and Environmental Sciences, University of Cadiz, 11510, Puerto Real, Cadiz, Spain.

Grupo de Investigación TEP-181 Universidad de Cádiz

INTRODUCTION

INTRODUCTION

METHODOLOGY

RESULTS AND DISCUSSION

- Microplastic pollution as an increasing problem.
- Wastewater treatment plants (WWTPs) are important inputs of these pollutants.
- Small WWTPs should be considered.

METHODOLOGY

Wastewater Treatment Plants.

INTRODUCTION

METHODOLOGY

RESULTS AND DISCUSSION

CONCLUSIONS

El Bosque IWWTP

Industrial effluent.

- 1. Pre-treatment. Roughing.
- 2. Biological treatment.Activated sludge with areation.Coagulation-flocculation.
- **3. Disinfection.** Chlorination chamber.

Prado del Rey UWWTP

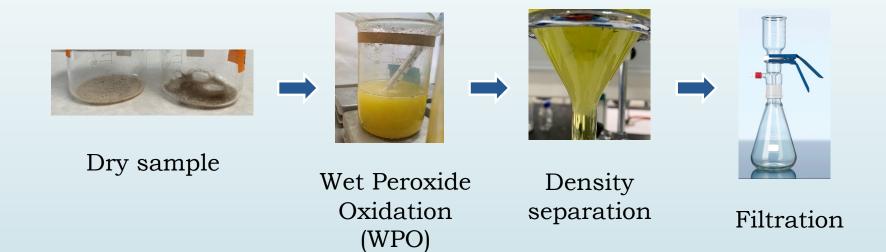
Urban effluent.

- 1. **Pre-treatment.** Roughing. Desanding-degreasing unit.
- 2. Biological treatment.

 Activated sludge with prolonged aeration.
- 3. Secondary decantation.

METHODOLOGY

Experimental procedure.


Sample collection

- Influent (5 L) and effluent (30 L).
- Filtered through 1000, 355 and 100 μ m stainless sieves.

INTRODUCTION

METHODOLOGY

RESULTS AND DISCUSSION

METHODOLOGY


Experimental procedure.

Identification and quantification of microparticles and microplastics

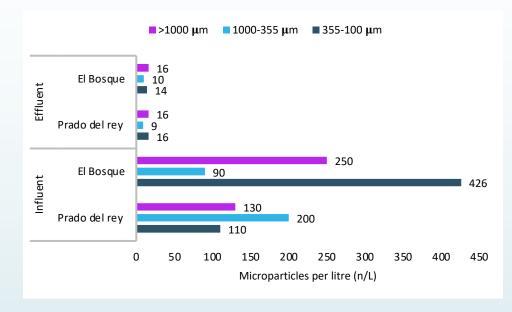
INTRODUCTION

METHODOLOGY

RESULTS AND DISCUSSION

Morphological characterization

Chemical characterization (FT-IR)


RESULTS AND DISCUSSION

Microparticles quantification and morphological identification.

INTRODUCTION

METHODOLOGY

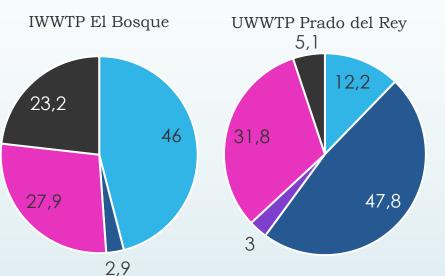
RESULTS AND DISCUSSION

	El Bosque		Prado del rey	
	Influent (n/L)	Effluent (n/L)	Influent (n/L)	Effluent (n/L)
Flake	120	6.4	105.6	6.93
Sphere	3.2	0.4	2.4	0.27
Filament	125.6	7.74	71.2	4.27
Fibre	264.8	12.4	129.6	16.13
Fragment	248	15.73	120.8	15.2

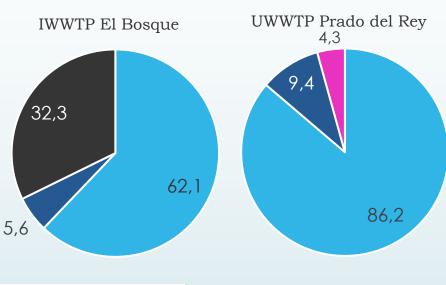
INTRODUCTION

METHODOLOGY

RESULTS AND


CONCLUSIONS

DISCUSSION


RESULTS AND DISCUSSION

Microplastics identification.

Influent (%)

Effluent (%)

PE (HD and LD)

PVC

PMMA

Others

PP

	Influent (MP/L)		Effluent (MP/L)	
	El Bosque	Prado del Rey	El Bosque	Prado del Rey
PE (HD and LD)	281.6	33.98	14.75	7.21
PVC	17.77	132.7	1.33	0.79
PP		8.35		
PMMA	171.12	88.31		0.36
Others	142.15	14.19	7.66	

CONCLUSIONS

INTRODUCTION

METHODOLOGY

RESULTS AND DISCUSSION

- Wide variability of n/L at inlet. Greater homogeneity at the outlet in both WWTPs.
- Great variability of polymer types.
- Annual volume of MPs discharged estimated between 1.2-199 MP/year.
- Technologies for removal of MPs are highly recommended.

THANK YOU FOR YOUR ATTENTION

Ana Pilar Martín García

PhD student

ana.martingarcia@uca.es

Department of Environmental Technologies, Faculty of Marine and Environmental Sciences University of Cádiz, Spain